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A second approximation for the velocity of a large 
gas bubble rising in an infinite liquid 

By R. COLLINS 
Department of Mechanical Engineering, University College London 

(Received 2 September 1965) 

A second approximation for the velocity of a large gas bubble in an infinite 
liquid is derived from a linear perturbation of the first approximation. Previously 
known experimental results are in excellent agreement with the resulting 
velocity, 

where ii is the apparent radius of curvature of the front part of the bubble, and 
g the acceleration due t o  gravity. The shape of this second approximation is seen 
to be indistinguishable from spherical over a large region near the front stagna- 
tion point. 

U = 0.652(@)4, 

1. Introduction 
In  liquids which are effectively infinite in extent, a large gas bubble assumes 

the form which is sketched in figure 1. The upper surface of the bubble is virtually 
indistinguishable from spherical, the lower surface is unsteady, fluctuating about 

FIGURE 1. General features of a large gas bubble. 

a horizontal plane, and the sphere which continues the bubble cap encloses a 
wake region behind the bubble. The detailed wake structure for the three- 
dimensional bubble has not been observed. Its extent is known, however, from 
the experiments of Davies & Taylor (1 950) who were able to distinguish the wake 
region due to an optical anisotropy of nitrobenzene in which their bubbles were 
blown. For what is virtually the two-dimensional analogue of the bubble shown 
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in figure 1, Collins (1965a) has shown the wake to consist of a large trailing vortex 
pair, as shown in figure 2 (plate 1). It is of some interest, and pertinent to a paper 
by Batchelor (1956) concerning wakes at  large Reynolds number, that at  values 
of the Reynolds number of the order of 104 the wake observed was closed, 
apparently stable and not cusped. In  view of this it seems likely that, in 
three-dimensions, the bubble wake consists of a toroidal vortex, rather like 
Hill's spherical vortex. 

The velocities of spherical-cap bubbles have been found by Rosenberg (1950) 
and by Davies & Taylor to be related to their apparent radii of curvature CC 
through a relation of the form 

where g is the acceleration due to gravity and k a constant. 
Rosenberg gave an experimental value of k = 0.645, while the mean value of 

the results quoted in table 2 of the paper by Davies & Taylor gives k = 0.655. In  
addition Davies & Taylor presented a theoretical evaluation, remarkable for its 
simplicity, which produced k = 3. For many purposes the differences in these 
values would rightly be considered insignificant and the theoretical value of 
Davies & Taylor used. Their very closeness, however, coupled with the fact that 
the bubble shape cannot be truly spherical as assumed by Davies & Taylor, leads 
one to suspect that it might be worthwhile to seek a second approximation from 
a perturbation of the spherical form. 

u = k(gZ)$, (1) 

2. Formulation of the method 
Consider the steady axisymmetric flow past the large bubble depicted in 

figure 3. Axes are fixed on the bubble which rises with velocity U and it is con- 
venient to take the origin of co-ordinates at  the centre of curvature of the bubble 

1 

FIGURE 3. Model of the spherical cap bubble. 

a t  its front stagnation point 8. The upper surface of the bubble and its continu- 
ation enclosing the wake can be described by an equation of the form 

= 4 1  +f(@}, (2) 
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where a is the radius of curvature at  S ,  and the velocity distribution on this 
boundary may be written in magnitude as 

q = Uh(8). (3) 

Large Reynolds and Weber numbers are known to characterize the motions of 
the bubbles considered here, so that, in determining the shape of the bubble cap, 
surface tension and viscous forces are usually considered to be negligible com- 
pared with gravity and inertia forces. The function h(0) is consequently assumed 
to have the form appropriate to the irrotational flow past the body defined by 
equation (2). Equations ( 2 )  and (3) are to be regarded as modelling the flow 
over the upper surface of the bubble in some detail, and, to a lesser extent, the 
flow outside the attached wake previously discussed. There is no attempt to 
construct a detailed model of the wake itself, indeed it does not appear to be 
necessary to do so. Further discussion of this point, and of the assumptions 
implied in the method, is deferred until 5 4. 

If p ,  is the stagnation pressure, p the liquid density and p the pressure at a 
point (T ,  6 )  on the bubble, then an application of Bernoulli’s equation to a stream- 
line on the bubble surface leads to a pressure coefficient distribution given by 

in which 

In  order to ensure that the gas pressure within the bubble is constant, m(0) 
and h(B) should be such that c2, = 0 for all 6 less than the maximum value 
defining the bubble rim. 

Equation (4) is to be expanded as a power series in 8 about 6 = 0,  but before 
doing this there are some properties required of the functions h(6) andf(8) which 
are worth noting since they serve to eliminate many terms in the expansion. 
First, to preserve symmetry, f ( 6 )  and hence m(0), must be even functions; 
all their odd derivatives thus vanish at  6 = 0. Secondly, since a is the radius of 
curvature of the bubble at  6 = 0 ,  it follows that f 2 ( 0 )  = 0 and mz(0) = l.t Finally, 
bubble symmetry will produce h(8) as an odd function so that all its even deri- 
vatives vanish at  6 = 0,  and of course, h(0) = 0 because (a, 0 )  is a stagnation 
point. Making use of these properties, the Taylor expansion of equation (4) 
gives 

m ( ~ )  = 1 - (1 +f(e))  cos 8. ( 5 )  

and the condition of constant pressure will be achieved if all coefficients in the 
expansion are zero. Clearly only the exact (and unknown) bubble form will be 
capable of producing this result in equation (6), other assumed approximate 
forms will make only a finite number vanish. Nevertheless, the first coefficient 
in equation (6) always determines the velocity since, for any approximation, it 
gives u = (ga)+/h,(O), ( 7 )  

t To avoid a possible confusion of indices, a suffix will be employed in this section to  
denote differentiation with respect to the argument of a function. This coincides with the 
usual notation for series expansion of a function. 
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which may be used to eliminate galU2 from all other coefficients. Labelling an 
approximation according to the number of coefficients that it eliminates in 
equation (6), the first is seen to be that of Davies & Taylor. On the basis of their 
experimental evidence showing the spherical-cap form they took r = a = ii 
so that f (0)  = 0. From the known irrotational flow past a sphere, h(6) = Q sin 6, 
so that equation (7) gives 

which Davies & Taylor obtained using the same principles, but in a slightly 
different manner. For this approximation, the coefficient of O4 in equation (6) 
is &, and the form of the pressure coefficient cp given by equation (4) is shown in 
figure 4. 

u = j(g& (8) 
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FIGURE 4. Variation of os with 8. - - - -, First approximation, Davies & 
Taylor; ___ , second approximation, present theory. 

Briefly, the method models the real flow in detail in a region which contains 
information about the terminal velocity, and then extracts this information 
from the model. It is semi-empirical to the extent that the first approximation 
relies on experimental evidence to suggest the otherwise unknown bubble form, 
and the second approximation is obtained from the &st by a perturbation 
technique. 

3. The perturbed bubble 
Some of the properties required of f (0 )  have already been listed in $2, they 

amount to the stipulation that f ( 0 )  should be an even function with a leading 
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term in O4 in its Taylor expansion. A simple function satisfying these condi- 
tions is f(6) = - E sin4 8, 

where E is the perturbation parameter. By choosing a function with maximum 
value at  8 = in, the perturbation parameter is efficiently utilized in modifying 
the boundary near the front stagnation point, and in addition, a bubble-wake 
system is produced with fore-and-aft symmetry, as suggested by figure 2 (plate 1). 
One is, of course, free to assume other forms for f ( 8 )  in this method, for example 
a function giving a cusped tail to the wake to comply with Batchelor’s proposal 
on the wake structure. This function would naturally be more complicated in 
form and would produce a correspondingly more complicated boundary condition 
in the perturbation problem. Further, it  seems unlikely that this added refine- 
ment would significantly modify the flow over the frontal region, which is the 
region of prime interest here, and there is, as yet, no experimental evidence on 
which to base an estimate of the size of the cusped region relative to the rest of the 
wake. The merits of the function chosen here reside then in the fact that it is 
simple, plausible and adequately produces a good second approximation. 

Since the flow is axisymmetric, it is possible to employ Stokes’s stream 
function, +, which satisfies the equation (Lamb 1932) 

(9) 

solutions of which are 

and 

where p = cos 8 and the P, are Legendre polynomials. The perturbed shape will 
be defined by $ = 0. For the basic flow, the stream function for the flow of a 
uniform stream past a sphere of radius u is? 

$,,(r,8) = iUr2sin28(1 -u3/r3), (12) 

and it will be assumed that the perturbed flow has a stream function of the form 

+(r, 8;  8 )  = 8)  + E$,(T, 8)  + ~ ~ + ~ ( r ,  8)  + . . . . (13) 

In  view of the close experimental agreement with the spherical first approxima- 
tion, E is considered small so that only linear terms will be retained in what 
follows. In  the Appendix it is shown that the contribution of the second-order 
terms to h,(O) is negligible, thereby justifying their neglect. 

On substituting into equation (10) and observing that the flow at infinity 
should be a uniform stream of velocity U ,  it is found that 

(14) 
D2$, = 0, $, + &Ur2sin28 (as r + co), 

and D2+, = 0, $, + 0 (as r + co), 

t A numerical suffix is used here to distinguish the various stream functions. 
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while the boundary condition $ = 0 on r = a( 1 - E sin4 8) gives 

$.,{a( 1 - s sin4 8) ,  8) + qhl{a( 1 - E sin4 e),  S} + . . . = 0. 115) 

Assuming that $1 is analytic in r ,  equation (15) may be expanded in a Taylor 
series about r = a to give 

$o(a, 8 )  - E a sin4 8$o,,(u, 8)  + ~ $ ~ ( a ,  8 )  + . . . = 0. (16) 

Since $o(a, 0) = 0 from equation (12), equation (16) requires 

$l(a, 0) = a sin4 8 4, 
which, using the basic solution in equation ( l 2 ) ,  gives 

$l(a, 0) = +Ua2 sin6 8. 

The linear perturbation problem is therefore the solution of the equation 

D2$, = 0, 

subject to the boundary conditions 

$l(a, 6 )  = gUa2sin6 8, 

and $ 1 + 0  as r + m .  
(19) 

It is immediately obvious that only those solutions in equation (1 1) which contain 
inverse powers of r will satisfy the boundary condition at infinity. A convenient 
method of constructing the solution is to rewrite the boundary condition on the 
bubble as 

to assume a series solution of the form 

$,(a, 8 )  = #Ua2sin2 8( 1 - 2 cos2 8 + C O S ~  8), (20) 

$ A ,  1 -p2 dPn 
n rn d p ’  

and to use the expansions of Legendre polynomials in powers of cos 0 given by 
Kobson (1931) to pick out the coefficients A,. The result is 

$1 = Ua2 sin2 8 [# {a/r}5 (0084 8 - $ cos2 8 + &} + 3 (1 - 5 cos2 S} + 8; {a/r}], 

(22) 

and the stream function for the perturbed flow, correct to terms in E ,  is then 

$ = 4 Ur2 sin2 8( 1 - a3/r3) + E Ua2 sin2 8 
x [$ ( ~ / r ) ~  {cos4 8 - cos2 8 + &} + g { a / ~ ) ~  { 1 - 5 cos2 8) + {air}]. (23) 

The component of the local radial velocity u along the bubble surface is 
O(s2) so that, for the linear problem, it does not contribute to the surface velocity 
distribution which is thus given by 

where v is the velocity component perpendicular to the radius vector. Using 
equation (7) the bubble velocity becomes 

U = 2(g(~)4/(3+$*s).  (25 1 
It is now possible to determine the value of E which will reduce the coefficient of 
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O4 in equation (6) to zero, thereby producing the second approximation. Making 
use of equation (7),  the requirement is that 

(hp4 - 4 q 0 = 0  = 0, (26) 

which gives a quadratic for E when the appropriate quantities are substituted. 
Discarding the squared term to be consistent, the necessary value is found to be 
e = 7.85 x The resulting bubble velocity from equation 25 is 

U = 0*636(gu)*, (27)  

and for this approximation the variation of cp with 8 shown in figure 4 is naturally 
somewhat flatter over the front part of the bubble than that for the first. 

4. Discussion 
At first sight, the constant in equation (27)  is lower than the experimental 

values of both Rosenberg and Davies & Taylor. It must be remembered, however, 
that the experimental results are expressed in terms of the apparent curvature 
of the cap, whereas the theoretical velocity is in terms of the curvature at  the 
stagnation point. What is measured in practice is, of course, not the curvature 
ut the stagnation point, but rather a mean value over a certain range of 8. Davies 
& Taylor carefully fitted circular arcs to their photographed bubble shapes and 
it appears that the total angle subtended at  the apparent centre of curvature 
by that part of the bubble which matched these arcs was approximately 75". 
They did not say whether the fit was achieved through a visual comparison or 
by numerical analysis of co-ordinates measured on the bubble cap. Rosenberg 
did not state the angle over which his own bubbles were fitted, but it is apparent 
from his list of references that he was aware of the work of Davies & Taylor and 
possibly fitted over the same angle. Referring to figure 5, a measure of the 
apparent radius of curvature of an arc of a bubble, SP, will be defined here as the 
distance SC, where C is the intercept of the perpendicular bisector of the chord 
S P  with the axis of symmetry. Other definitions of ?i are certainly possible; 
they would all, however, give ?i < u. From this definition, it follows that 

(28) 
- 
u = (u2 - 2ur cos 8 + r2 ) /2 (u  - r cos 8).  

For the bubble r = a( 1 - E sin4 O), if P is chosen at  8 = 36", then the angle XCP, 
denoted by O f ,  is 37-5", Z = 0.953u, and the velocity becomes 

U = 0.652(gZ)t, (29) 

which is in excellent agreement with the experimental results of both Rosenberg 
and Davies & Taylor, as shown in figure 6. Since Rosenberg did not present 
tabulated data, this figure was drawn by superimposing Davies & Taylor's 
data and the theoretical lines on a magnified image of Rosenberg's own figure, 
which had been projected on a logarithmic grid. It may be further noted from 
this figure 6 that the two sets of experimental results contain roughly equal 
numbers of bubbles, that they cover different ranges of a, and that, where they 
overlap, the two sets do not conflict. 



476 R. Collins 

FIGURE 5. Comparison of bubble shapes: --, r = a; 
0, r = a(l-~sin4/3), E s 0.0785; - - - ,  5 = 0 . 9 5 3 ~ ~ .  
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FIGURE 6. Comparison between experiment and theory. Experimental : + , Rosenberg ; 
0, Davies & Taylor. Theoretical : . . . , first approximation, &vies & Taylor ; - - -, second 
approximation, present theory. 
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Figure 5 compares the three curves r = a, r = a( 1 - E sin4 8) and G = 0.953~. 
Even when drawn on a large scale it is difficult to distinguish any difference 
between the latter two for values of 6’ < 37.5” so that, over this range, the 
second approximation is visually indistinguishable from spherical. It should be 
noted that the first approximation has been plotted in figure 4 so as to compare 
cp at the same point on the bubbles r = a (1 - e sin4 8) and G = 0.953~.  This has 
necessitated a slight adjustment in the abscissa for the first approximation 
which is strictly expressed in terms of the angle 8‘ in figure 5 rather than 8. 

Some previous writers, for example Moore (1959) and Rippin (1959) have 
rejected closed wake models on the grounds that they have no drag by d’Alem- 
bert’s paradox and therefore, presumably, an infinite terminal velocity. To state 
that closed wakes are inadmissible on these grounds, however, immediately 
begs a question: why does the present closed wake model, like that of Davies 
and Taylor,? give a finite velocity so close to experiment? First, a more comfort- 
able feeling about this point is engendered by the realization that the present 
method does not calculate a drag coefficient for the bubble. This is because it 
does not relate the terminal velocity to the bubble volume, and hence to the 
buoyancy force producing the motion. The angle subtended by the bubble 
rim at the apparent centre of curvature is not theoretically determined, although 
it is possible that higher approximations obtained in this manner might shed 
some light on why the bubble terminates at  8’ = 50”. But to answer the question 
it is necessary to re-examine the assumptions in the method. It should be appre- 
ciated that it is not necessary to assume that the fluid is inviscid; what is assumed 
is that the flow over the bubble cap is irrotational because viscous and surface 
tension forces are negligible in that region. It is not implied that the irrotational 
flow past the shape which continues the bubble cap and encloses the wake is 
a detailed model of the flow in that region, it merely models the gross feature 
of wake closure. This is what was meant by the statement in 5 2 that the flow was 
modelled there only to some extent. Now d’Alembert’s paradox deals with an 
inviscid fluid and may be derived either by considering overall changes in the 
momentum of a fluid stream flowing past a closed body, or by integrating the 
irrotational pressure coefficient distribution over the whole of the surface of 
the body. It thus has no relevance to the present method, although it would be 
relevant in aiming to solve the inviscid free boundary problem as was Rippin’s 
numerical procedure. There is a paradox involved none the less: it is that, while 
the terminal velocity of the real bubble is determined by the rate of energy dis- 
sipation in the flow and primarily in the wake$, it is not necessary to construct 
a detailed picture of the wake in order to deduce the relation between bubble 
shape and velocity. The explanation is that bubble velocity, bubble shape and the 
rate of energy dissipation are inter-related and in the sequence of events which 
determines the terminal velocity they appear, so to speak, on a closed loop. 

t There is no explicit reference in the first approximation to the modelling of the closed 
wake, the modelling is implicit because the boundary assumed there was spherical. 

$ Davies & Taylor were able to estimate the rate of energy dissipation in the wake 
region and found it to be of the same order of magnitude as the rate of working of the 
buoyancy force. 
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Bubble shape and the energy dissipation are related because the structure of 
the whole flow is affected by the shape the bubble finally adopts. The rate of 
working of the buoyancy force may be equated quite generally to  the rate of 
energy dissipation in the flow, thereby relating terminal velocity and energy dis- 
sipation. Finally to close the loop, bubble shape and velocity are related through 
the requirement of constant gas pressure within the bubble. The whole loop 

I ’  

appears as 

-1 

-1 
Dissipation 

‘-Velocity 

and it is by a process of continual adjustment round the loop that the real 
bubble reaches its final shape and velocity. It can now be seen that by using the 
equation expressing the constant pressure requirement, bubble velocity can be 
inferred from an assumed shape which models the real shape and that this does 
not involve any consideration of the detailed wake structure. The region of 
prime interest in this procedure is the bubble cap, but it does seem reasonable 
to model the effect of wake closure, however crudely, on the flow in that region. 
There would be, in fact, little merit in trying to infer velocity from an assumed 
wake structure unless one could construct a model of the energy dissipation 
a t  least as accurate as the model of the cap. 

5. Concluding remarks 
The main result of the present analysis is to modify the value of X: = 8 found 

by Davies & Taylor to E = 0.652, which is in slightly better accord with the 
experimental values. In  addition, it is seen that a shape which satisfies the con- 
stant pressure requirement as far as terms in 04, is indistinguishable from a sphere 
over its frontal part. Perhaps the most useful consequence is that the first ap- 
proximation of Davies & Taylor is thereby reinforced, its result being very close 
to the second. It would therefore be expected to give good results in more com- 
plicated geometries where the second approximation would become laborious. 
The two-dimensional problem when the liquid is finite in extent has been studied 
to the first approximation by Collins (19653). An extension to the corresponding 
three-dimensional problem will be considered in a subsequent paper. 

Finally, it  is easily demonstrated that the present results apply equally well 
to Davidson’s (1961) model of the bubble in a fluidized bed. An essential feature 
of his model is that the components of gas and particle velocities in the bubble 
surface are equal. This implies that the drag force on a particle moving on the 
bubble boundary is always normal to the direction of particle motion so that i t  
moves as if it were on a smooth surface. Simple considerations of energy con- 
servation show that 

~. 

q 2  = 2qs, 

where s is the distance of the particle below the front stagnation point, or in the 
terminology of 5 2 

2gam(O)/U2-(h(0))2 = 0 ,  
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which is simply equation (4). The analysis subsequent to equation (4) thus 
applies to Davidson’s bubble model. 

Appendix 
The boundary condition on the bubble for the second-order perturbation 

problem is obtained if the second-order terms are retained in the expansion 
of equation (15). The resulting perturbation problem is 

D2$, = 0, 

subject to the boundary conditions 

9h2+0 as r+m, (32) 

and 

Use of the basic and first-order solutions and a rearrangement of terms reduces 
the second boundary condition to 

$2(a, 8) = a sin4 @hlr(a, 8) - &a2 sins /3@01.r(a, 8). 

$2(a, 8) = - U a 2 s i n 2 8 { ~ - c o s s 8 - 2 6 c o s G 8 + ~ ~ ~ ~ c o s 4 8 - ~ ~ c o s 2 8 + - ~ ~ } .  181 (33) 

$2 = - Ua2 sin2 6 [+? (u/r}9 (COSS 6 - S C O S ~  8 + +$ c0s4 8 - S cos2 0 + Bm} 7 

The solution of this problem is 

1 7  2 2 1  

- 3 3 2 { ~ / r } ~  1 7  (COS 8 - +g c0s4 8 + 
x { c o s ~ ~ - ~ c o s ~ ~ + + ~ }  - 4 ~ 1 5 1 6 { a / r } 3 { ~ o s 2 8 - ~ } +  1.0908(a/r}], (34) 

cos2 8 - &} + 10.1626 { ~ / r } ~  

which was obtained in the same manner as the first-order solution and which 
is approximate in the sense that some of the more unwieldy fractions have been 
replaced by decimals rounded to four places (for example, 1.0908 is the ratio of 
two terms O(lOG)). 

Witch both $1 and $2 determined, it is now possible to calculate the surface 
speed, and hence hl(0) correct to terms in c2 from equation (13). It might be 
thought necessary to include in this calculation the contribution from the 
component of u which is 0 ( e 2 )  but in fact, since a varies directly with sin4@, it 
does not contribute to hl(0). As in the linear case hl(0) may therefore be calculated 
from w, resulting in the equation 

hl(0) = 1*5( 1 + 0 .6095~  - 0 . 1 4 2 0 ~ ~ .  . .). (35) 

It is apparent that, with E = 0.0785 from the linear perturbation, the term in e2 
modifies h,(O) by only 0.08 yo. The neglect of the second-order term in 5 3 is thus 
considered to be justified. 
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Note added at the proof stage 

Dr Davidson has kindly pointed out some related work on this topic by Temper- 
ley & Chambers (1945). Their experiments led them to conclude that the velo- 
cities of spherical-cap bubbles having cap radii up to 15 cm were consistent with 
a value of Ic = 8. It must be noted, however, that their measurements of a were 
accurate only to 20 %, so that they would not have been able to detect the slight 
change brought about by the present second approximation. They also attempted 
to improve Davies & Taylor’s result by assuming that the flow could be modelled 
with a combined source and doublet in a uniform stream, with which it is possible 
to produce a second approximation. Expressed in the present notation their 
results give U = 0-535(ga)t = 0-54(gU)*, where 2i has been fitted as in $4. 
(The first result quoted appears rounded-off in their paper to U = 0*54(gu)*.) 
As they noted, this worsens the agreement with experiment, a result almost 
certainly brought about by the presence of the source term producing an infinite 
wake. Recent observations of spherical-cap bubble wakes by the writer support 
the conjecture on wake structure advanced in $ 1 of this paper. 
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COLLINS 

FIGURE 2. Wake structure for a large two-dimensional gas bubble. 

Plate 1 




